Crystal structures and non-linear optical properties of cluster compounds $[MAu_2S_4(AsPh_3)_2]$ $(M = Mo \text{ or } W) \dagger$

He-gen Zheng,*^a* **Wei Ji,***^b* **Michael L. K. Low,***^b* **Genta Sakane,***^c* **Takashi Shibahara** *^c* **and Xin-quan Xin *,***^a*

^a State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Nanjing University, Nanjing, 210093, People's Republic of China ^b Department of Physics, National University of Singapore, Singapore 119260, Republic of Singapore

^c Department of Chemistry, Okayama University of Science, Okayama 700, Japan

The compounds $[MAu_2S_4(AsPh_3)_2]$ (M = Mo **1** or W **2**) were synthesized by reactions of $[NEt_4]_2[MS_4]$ (M = Mo or W), HAuCl**4**?4H**2**O and AsPh**3** in CH**2**Cl**2** solution. X-Ray crystallographic structure determinations show that the co-ordination of Mo(W) is slightly distorted from tetrahedral and those of the Au are distorted from trigonal planar. High non-linear susceptibilities of these gold-containing clusters were also observed for the first time. Z-Scan data measured with 532 nm nanosecond laser pulses showed that effective third-order non-linearities $\alpha_2 = 7.9 \times 10^{-5}$ and 13×10^{-5} dm³ cm W⁻¹ mol⁻¹ and $n_2 = -8.0 \times 10^{-10}$ and 19×10^{-10} dm³ cm² W⁻¹ mol⁻¹, respectively, for a 0.64 mmol dm^{-3} solution of compound **1** and a 0.54 mmol dm^{-3} solution of **2**.

The $Mo(W)-Cu(Ag)-S$ cluster compounds have been studied extensively in the past two decades, because of their relevance to biological systems and catalytic processes.**1,2** Recently, we have noticed that they also exhibit very interesting non-linear optical (NLO) properties. For example, strong NLO behaviour has been reported in nest-shaped clusters [NBu**ⁿ ⁴**]**2**[MoCu**3**- OS**3**(NCS)**3**] and [NBu**ⁿ 4**]**2**[MoCu**3**OS**3**BrCl**2**], a supracageshaped cluster [NBu**ⁿ ⁴**]**4**[Mo**8**Cu**12**O**8**S**24**], and a twin nest-shaped cluster [NEt**4**]**4**[Mo**2**Cu**6**OS**6**Br**2**I**4**]. **3–5** Butterfly-shaped clusters $[MCu₂OS₃(PPh₃)_n]$ (M = Mo or W, n = 3 or 4) and a half-open cage-shaped cluster [NEt**4**]**3**[W(CuBr)**3**OS**3**(µ-Br)]?2H**2**O exhibit large NLO refraction.**6,7** Cubane-like clusters [NBu**ⁿ ⁴**]**3**- $[MM'_{3}S_{4}Br(X)]$ (M = Mo or W, M' = Cu or Ag, X = Cl or I) possess strong NLO absorption.⁸ A very large optical limiting effect has been observed in a hexagonal prism-shaped cluster $[Mo₂Ag₄S₈(PPh₃)₄],$ which is about ten times larger than that observed in C_{60} .⁹ In order to explore this field further, we have synthesized a series of new $Mo(W)-Au-S$ cluster compounds. In this article we report the synthesis, characterization and NLO properties of gold-containing compounds with a linear structure, $[MoAu₂S₄(AsPh₃)₂]$ **1** and $[WAu₂S₄(AsPh₃)₂]$ **2**.

Experimental

Materials

Compounds [NEt**4**]**2**[MoS**4**] and [NEt**4**]**2**[WS**4**] were prepared according to a literature method.**¹⁰** Other chemicals were of AR grade and used without further purification.

Preparations

[MoAu2S4(AsPh3)2] 1. Triphenylarsine (120.3 mg, 0.3931 mmol) dissolved in CH**2**Cl**2** (5 cm**³**) was slowly added to HAuCl**4**?4H**2**O (81 mg, 0.1966 mmol) in absolute ethanol (5 cm**³**). The light yellow solution was stirred for 2 h and refrigerated at 5° C overnight. The resulting colourless crystals were dissolved in CH_2Cl_2 (15 cm³) and $[NEt_4]_2[MoS_4]$ (47.64 mg, 0.0983 mmol) was added. After stirring for 1 h the red-black solution was filtered and Pr**ⁱ** OH (10 cm**³**) was added dropwise to

the top of the solution. The red crystals were obtained several days later (Found: C, 35.15; H, 2.4. Calc. for C**36**H**30**As**2**Au**2**- MoS₄: C, 35.15; H, 2.45%). IR (KBr pellet, cm⁻¹): C–H in AsPh₃, 734.1vs, 689.3vs; Au-P, 614.6w; Mo-S_b, 453.4vs.

DALTON

[WAu₂S₄(AsPh₃)₂] 2. The synthetic method was similar to that used for compound **1**, $[NEt_4]_2[WS_4]$ being used instead of [NEt**4**]**2**[MoS**4**]. Yellow crystals were obtained (Found: C, 32.75; H, 2.32. Calc. for C**36**H**30**As**2**Au**2**S**4**W: C, 32.8; H, 2.3%). IR (KBr pellet, cm⁻¹): C-H in AsPh₃, 737.5vs, 688.3vs; Au-P, 519.5w; W-S_b, 477.3vs, 442.2vs, 407.0w.

X-Ray crystallography

A red crystal of compound **1** was mounted in a glass capillary. All measurements were made on a Rigaku AFC6S diffractometer with graphite-monochromated Mo-Kα radiation $(\lambda = 0.7107 \text{ Å})$. The lattice parameters shown in Table 1 were refined using 21 reflections in the range $9.4 < \theta < 12.7^{\circ}$. The data collection with ω –2 θ scans between 3 and 25° resulted in 6949 intensity values, 4591 with $I > 1.50\sigma(I)$ being used for the structure determination. The structure was solved by heavyatom Patterson methods **¹¹** and expanded using Fourier techniques.**¹²** The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included but not refined. The final cycle of full-matrix least-squares refinement converged with unweighted and weighted agreement factors *R* = 0.0299 and $R' = 0.0387$.

For compound **2**, an orange crystal was mounted in a glass capillary for X-ray data collection. All measurements were made on a Mac Science MXC-18 diffractometer. The lattice parameters (Table 1) were refined using 39 reflections in the range $10.0 < \theta < 15.0^{\circ}$. The data collection with ω -2 θ scans between 3 and 30° resulted in 11 491 intensity values, 7676 with *I* >1.50σ(*I*) being used for the structure determination. The structure was solved by direct methods **¹³** and expanded using Fourier techniques. The refinement was based on *F*. An empirical absorption correction using the program DIFABS**¹⁴** was applied. The data were corrected for Lorentz-polarization effects, and the final $R = 0.0638$ and $R' = 0.0859$. The function minimised was $\Sigma w(|F_o| - |F_e|)^2$, where $w = 1/\sigma^2(F_o)$.

All calculations were performed using the TEXSAN**15** crys-

[†] *Non-SI unit employed*: eV ≈ 1.60 × 10⁻¹⁹ J.

$$
(NH4]2[MO2S2] + HAuCl4 * 4H2O + AsPh3
$$

\n
$$
+ \frac{1}{2}
$$

\n
$$
(Ph3 As)Au SS - MSS - Au(AsPh3)
$$

\n**Scheme 1**

$$
3[MO2S2]2- 3[MOS3]2- + [MO4]2-
$$

$$
4[MOS3]2- 3[MS4]2- + [MO4]2-
$$

Scheme 2

tallographic software package. Selected bond distances and angles are given in Tables 2 and 3.

Atomic coordinates, thermal parameters, and bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre (CCDC). See Instructions for Authors, *J. Chem. Soc.*, *Dalton Trans.*, 1997, Issue 1. Any request to the CCDC for this material should quote the full literature citation and the reference number 186/499.

Physical measurements

Infrared spectra were recorded on a Fourier Nicolet FT-10SX spectrophotometer with pressed KBr pellets, electronic spectra with a Hitachi U-3410 spectrophotometer. Carbon and hydrogen analyses were performed on a PE-240C elemental analyser.

Non-linear optical measurements

The NLO properties of compounds **1** and **2** dissolved in CH_2Cl_2 were determined by using a standard Z-scan set up with a Q-switched, frequency-doubled Nd : YAG laser. The pulse repetition rate was 10 Hz. The details of the set-up can be found elsewhere.**¹⁶** The solutions were contained in 1 mm thick quartz cells with concentrations of 6.4×10^{-4} and 5.4×10^{-4} mol dm⁻³ for compounds **1** and **2**, respectively.

Results and Discussion

Synthesis

The compounds were synthesized from $[NEt_4]_2[MS_4]$ (M = Mo or W), $HAuCl_4 \cdot 4H_2O$ and $AsPh_3$ in CH_2Cl_2 solution. When $[NEt_4]_2[MO_2S_2]$ was used instead of $[NEt_4]_2[MS_4]$, the same compounds were obtained, as in Scheme 1. The transformation from $[MO_2S_2]^2$ ⁻ to $[MS_4]^2$ ⁻ may take place as in Scheme 2. Therefore, the $[MS_4]^2$ ⁻ anion reacts with $[Au(AsPh_3)]^+$ to give the products. However, an interesting fact is that [MoOS₃- $(AuPPh_3){Au(PPh_3)_2}$ was synthesized in poor yield by reaction of Cs₂[MoOS₃] and [Au(PPh₃)Cl].¹⁷

Structures of $[MAu_2S_4(AsPh_3)_2]$ $(M = Mo 1$ **or W 2)**

Figs. 1 and 2 show the crystal structures of compounds **1** and **2**, Figs. 3 and 4 the packings of the clusters in the solid state. The skeletons, consisting of one M, four μ -S and two Au atoms, show linear structures with crystallographic C_{2v} symmetry. The Au-Mo-Au and Au-W-Au angles are 178.51(3) and 178.27(2) $^{\circ}$, respectively. The M (Mo or W) atom has essentially tetrahedral co-ordination and MS**⁴ 2**2 acts as a tetradentate ligand co-ordinating to two Au atoms through its four μ -S atoms. Each Au atom is co-ordinated by two μ -S atoms and one AsPh₃ ligand, forming a planar trigonal geometry.

The $MS¹S²Au¹$ and $MS³S⁴Au²$ (M = Mo or W) cores in compounds **1** and **2** are planar to within 0.0056 (0.0083) and 0.0125 (0.0136) Å, respectively. Their dihedral angle is 89.65 (89.73)°, which means that they are essentially perpendicular to each other.

There are two types of structures in related linear compounds as depicted in Scheme 3; the main bond lengths are listed in Table 4, which reveals several structural trends. First, in all linear-shaped compounds $MS₂M'_{2}$ (M = Mo or W; M' = Cu,

Fig. 1 Crystal structure of $[MoAu₂S₄(AsPh₃)₂]$

Fig. 2 Crystal structure of $[WAu_2S_4(AsPh_3)_2]$

Fig. 3 Packing of [MoAu**2**S**4**(AsPh**3**)**2**] in the solid state

Ag or Au), each Au atom in compounds **1**, **2**, **6** and **10** is in a trigonal-planar co-ordination; one Cu(Ag) atom in **3**–**5** and **7**–**9** is tetrahedrally co-ordinated and the other is trigonally co-ordinated. However, the co-ordination modes of two Au atoms in the nest-shaped compound $[MoOS₃(AuPPh₃)(Au-$ (PPh**3**)**2**}] are the same as those observed in linear-shaped $Mo(W)-Cu(Ag)-S$ cluster compounds. Secondly, the M-S bond lengths of four gold-containing linear compounds are similar to each other. Owing to the influences of the ligands, the Mo-Au, W-Au and Au-S bond lengths are different. The Au–As bond lengths are, of course, longer than corresponding Au-P distances. The explanation for this fact is that the covalent radius (1.21 Å) of As is longer than that (1.10 Å) of P. Thirdly, the Au–P bond length $[2.272(2)$ Å for $\boldsymbol{6}]$ trigonally coordinated in Mo-M'-L ($M' = Cu$, Ag or Au) compounds **3**, **4**,

Fig. 4 Packing of [WAu**2**S**4**(AsPh**3**)**2**] in the solid state

Table 1 Crystal data and experimental parameters for complexes **1** and **2***

	1	2	
Formula	$C_{36}H_{30}As_2Au_2MoS_4$	$C_{36}H_{30}As_2Au_2S_4W$	
М	1230.59	1318.50	
Crystal size/mm	$0.41 \times 0.20 \times 0.16$	$0.50 \times 0.41 \times 0.30$	
a/Å	9.580(4)	9.572(2)	
b∕Å	10.753(4)	10.803(2)	
$c/\text{\AA}$	19.838(8)	19.816(4)	
$\alpha/^\circ$	88.12(4)	88.15(1)	
β /°	80.20(4)	80.30(2)	
γ /°	67.39(3)	67.52(2)	
U/\AA ³	1857(1)	1865.2(7)	
T/K	290.2	295.2	
$D_{\rm c}/\rm g\ cm^{-3}$	2.200	2.348	
F(000)	1152.00	1216.00	
μ (Mo-Ka)/cm ⁻¹	102.55	129.64	
$2\theta_{\rm max}/\textdegree$	50.0	60.0	
Scan speed/ \degree min ⁻¹	2.0	8.0	
No. observations	4591	7676	
$[I>1.5\sigma(I)]$			
R	0.0299	0.0638	
R^{\prime}	0.0387	0.0859	
Goodness of fit indicator	1.108	0.935	
Maximum, minimum peaks in final difference map/e $\rm{\AA}^{-3}$	$0.96, -0.71$	$6.85, -5.29$	

* Details in common: triclinic, space group $P\bar{1}$; $Z=2$; 407 variables; maximum shift in final cycle 0.00.

and 6 is between the Cu-P [2.210(5) Å] and Ag-P distances [2.380(4) Å], though atom covalent radii vary as $Au > Ag > Cu$, showing that the Au-P bond is stronger than the Cu-P and Ag–P. The same trend is observed in W–M'–S compounds 7, 8 and 10 . Fourthly, M'-P, M'-S and M-M' bond lengths in tetrahedral co-ordination are longer than those in trigonal coordination in compounds **3**–**5** and **7**–**9**. However, the opposite trend is found in $\overline{M}-S$ bond distances.

NLO properties of $[MAu_2S_4(AsPh_3)_2]$ $(M = Mo 1$ or W 2)

The similarity in the structures of the two compounds should lead to similar UV/VIS spectra, which is confirmed by Fig. 5. The red shift in the spectrum of compound **1** is expected since it contains one Mo atom instead of one W atom. The first absorption peaks are located at 500 (2.48) and 410 nm (3.02 eV) for compounds **1** and **2**, respectively. Their Z-scan results are shown in Fig. 6, where the filled and open circles were measured

Scheme 3

Table 2 Selected bond distances (Å) and angles (\degree) for compound 1

with and without the aperture, respectively. To obtain the NLO parameters we employed a Z-scan theory which considers effective non-linearities of third-order nature only: $\alpha = \alpha_0 + \alpha_2 I$

Table 4 Comparison of main bond distances (Å) *^a*

Compound	$M-S^b$	$M-M'$	M' -S b	M' -L	Ref.
1 $[MoAu_2S_4(AsPh_3)_2]$	2.214(2)	2.7764(7)	2.390(2)	2.373(8)	This work
3 $[MoCu2S4(PPh3)3]\cdot 0.8CH2Cl2$	2.218(5)	2.642(3)	2.220(5)	2.210(5)	18
	$2.198(5)$ *	$2.775(2)$ *	$2.313(5)$ *	$2.303(5)$ *	
4 $[MoAg_2S_4(PPh_3)_3] \cdot 0.8CH_2Cl_2$	2.215(5)	2.860(2)	2.459(5)	2.380(4)	19
	$2.195(5)$ *	$3.030(2)$ *	$2.572(5)$ *	$2.471(4)$ *	
5 [NEt ₄][MoAg(CuCN)S ₄ (PPh ₃) ₂]	2.202(6)	2.622(3)	2.209(7)	1.87(2)	20
	$2.189(5)$ *	$3.075(2)$ *	$2.584(5)$ *	$2.484(5)$ *	
6 [MoAu ₂ S ₄ (PPh ₃) ₂]	2.214(2)	2.810(1)	2.405(2)	2.272(2)	17
2 [WAu ₂ S ₄ (AsPh ₃) ₂]	2.215(2)	2.8027(4)	2.413(3)	2.372(9)	This work
7 [WCu ₂ S ₄ (PPh ₃) ₃] \cdot 0.8CH ₂ Cl ₂	2.224(8)	2.670(3)	2.232(9)	2.209(8)	19
	$2.204(3)$ *	$2.809(3)$ *	$2.333(3)$ *	$2.307(8)$ *	
8 [WAg ₂ S ₄ (PPh ₃) ₃] \cdot 0.8CH ₂ Cl ₂	2.219(1)	2.886(2)	2.476(6)	3.362(5)	19
	$2.195(5)$ *	$3.056(2)$ *	$2.579(5)$ *	$2.460(1)$ *	
9 [NEt ₄][WAg(CuCN)S ₄ (PPh ₃) ₂]	2.202(5)	2.638(3)	2.219(6)	1.82(2)	21
	$2.189(5)$ *	$3.099(2)$ *	$2.596(5)$ *	$2.479(5)$ *	
10 $[WAu_2S_4(PMePh_2)_2]$	2.219(3)	2.841(1)	2.429(3)	2.268(3)	22
11 $[MoOS_3(AuPPh_3){Au(PPh_3)}]$	2.261(2)	2.838(1)	2.419(2)	2.277(2)	17
	$2.241(2)$ *	$3.133(1)$ *	$2.644(2)$ *	$2.325(2)$ *	

^{*a*} M = Mo or W; M' = Cu, Ag or Au. ^{*b*} Average values. * The starred bond lengths are those when the Cu or Ag has tetrahedral co-ordination and the S or P atom is bonded to the Cu or Ag.

12

 1.0

Fig. 5 Electronic spectra of $[MoAu_2S_4(AsPh_3)_2]$ $(9.6 \times 10^{-5} \text{ mol dm}^{-3})$ $(- - -)$ and $[WAu_2S_4(AsPh_3)_2]$ $(4.2 \times 10^{-4} \text{ mol dm}^{-3})$ $(- -)$ in CH₂Cl₂. Optical path 1 cm

and $n = n_0 + n_2$ *I*, where α , α_0 and α_2 are the total, linear and non-linear absorption coefficients, *n*, n_0 and n_2 the total, linear and non-linear refractive indices and *I* is the light irradiance. The details of the theory can be found elsewhere.**¹⁶** The good fits between the theory and the Z-scan data suggest that the observed non-linearities can be expressed effectively by thirdorder susceptibilities. The values of α_2 and n_2 extracted from the best fits are listed in Table 5. The modulus of the third-order molecular susceptibility was calculated from equation (1) where

$$
|\gamma| = \frac{1}{NF^4} \sqrt{\left(\frac{9 \times 10^8 \epsilon_0 n_0^2 c^2 \alpha_2}{4 \pi \omega}\right)^2 + \left(\frac{c n_0^2 n_2}{80 \pi^2}\right)^2} \qquad (1)
$$

 ε_0 and *c* are the permittivity and the speed of light in a vacuum, respectively, ω is the angular frequency of the light, *N* the compound concentration, and $F⁴$ the local Lorentz field. In this expression all the units are SI except that N is in cm⁻³ and $|\gamma|$ is in esu. Assuming that $F^4 = 3$, we calculate that $|\gamma| = 3.0 \times 10^{-29}$ and 6.5×10^{-29} esu (esu = 7.162×10^{13} m⁵ v⁻²) for compounds **1** and **2**, respectively. Note that such a large γ value is measured in the transparent region for compound **2**, and is several orders of magnitude greater than those in well known NLO materials in the transparent part of their spectra (for example: 5.6×10^{-35} –

Fig. 6 Z Scans of $[MoAu_2S_4(AsPh_3)_2]$ $(6.4 \times 10^{-4} \text{ mol dm}^{-3})$ and $[\text{WAu}_2\text{S}_4(\text{AsPh}_3)_2]$ (5.4 \times 10⁻⁴ mol dm⁻³) with 532 nm, 7 ns laser pulses. Optical path 1 mm. Incident energy of pulses 20 mJ. Transmittance of the aperture 0.34. The experimental data were measured with $\left(\bullet \right)$ and without (O) the aperture, respectively. The solid curves represent fits based on Z-scan theory. The Z scans of [WAu**2**S**4**(AsPh**3**)**2**] have been vertically displaced by 0.4 for clarity

 8.6×10^{-34} esu for Group 10 metal alkynyl polymers at 1064 nm,^{23,24} 1×10^{-32} – 1×10^{-31} esu for metallophthalocyanines at 1064 nm²⁵ and 7.5×10^{-34} esu for C₆₀ at 1910 nm).²⁶ It is also interesting to compare these two new compounds with clusters that we have previously reported. Table 5 shows that compound **2** compares favourably with all the clusters in terms of figures of merit, α_2/α_0 and n_2/α_0 .

It should be emphasized that the Z scans reported here could not reveal the origins of the observed non-linearities. Excitedstate absorption and non-linear scattering are possible for the measured absorptive non-linearity. The change in the sign of the measured refractive non-linearity may give a hint as to the cause of the non-linear refraction. The signs of refractive nonlinearities for all the clusters, listed in Table 5, show that *n*₂ alters from positive to negative as the ratio of the photon energy $(h\omega)$ to that of the first absorption peak $(h\omega_0)$ approaches 1 : 1. The turning point is located at around *h*ω/ $h\omega_0 \approx 0.8$:1, which is consistent with a recently developed theory on bound-electronic effects.**²⁷**

Table 5 NLO Parameters for clusters measured at photon energy $h\omega = 2.33 \text{ eV}$

References

- 1 R. H. Holm, *Chem. Soc. Rev*., 1981, **10**, 455.
- 2 E. D. Simhon, N. C. Baenziger, M. Kanatzidis, M. Draganjac and D. Coucouvanis, *J. Am. Chem. Soc*., 1981, **103**, 1218.
- 3 S. Shi, W. Ji, W. Xie, T. C. Chong, H. C. Zeng, J. P. Lang and X. Q. Xin, *Mater. Chem. Phys*., 1995, **39,** 298; W. Ji, P. Ge, W. Xie, S. H. Tang and S. Shi, *J. Lumin*., 1996, **66/67**, 115; H. W. Hou, X. R. Ye, X. Q. Xin, J. Liu, M. Q. Chen and S. Shi, *Chem. Mater*., 1995, **7**, 472.
- 4 S. Shi, W. Ji and X. Q. Xin, *J. Phys. Chem*., 1995, **99**, 894; W. Ji, W. Xie, S. H. Tang and S. Shi, *Mater. Chem. Phys*., 1995, **43**, 45.
- 5 H. W. Hou, X. Q. Xin, J. Liu, M. Q. Chen and S. Shi, *J. Chem. Soc.*, *Dalton Trans*., 1994, 3211.
- 6 Z. R. Chen, H. W. Hou, X. Q. Xin, B. Yu and S. Shi, *J. Chem. Phys*., 1995, **99**, 8717.
- 7 S. Shi, H. W. Hou and X. Q. Xin, *J. Phys. Chem*., 1995, **99**, 4050.
- 8 S. Shi, W. Ji, S. H.Tang, J. P. Lang and X. Q. Xin, *J. Am. Chem. Soc*., 1994, **116**, 3615; S. Shi, W. Ji, J. P. Lang and X. Q. Xin, *J. Phys. Chem*., 1994, **98**, 3570; W. Ji, H. J. Du, S. H. Tang and S. Shi, *J. Opt. Soc. Am. B*, 1996, **12**, 876.
- 9 W. Ji, S. Shi, H. J. Du, P. Ge, S. W. Tang and X. Q. Xin, *J. Phys. Chem*., 1995, **99**, 17 297.
- 10 J. W. McDonald, G. D. Friesen, L. D. Rosenhein and W. E. Newton, *Inorg. Chim. Acta*, 1983, **72**, 205.
- 11 PATTY, P. T. Beurskens, G. Admiraal, G. Beurskens, W. P. Bosman, S. Garcia-Granda, R. O. Gould, J. M. M. Smits and C. Smykalla, The DIRDIF program system, Technical Report of the Crystallography Laboratory, University of Nijmegen, 1992.
- 12 P. T. Beurskens, G. Admiraal, G. Beurskens, W. P. Bosman, R. Gelder, R. Israel and J. M. M. Smits, The DIRDIF 94 program system, Technical Report of the Crystallography Laboratory, University of Nijmegen, 1994.
- 13 SHELXS 86, G. M. Sheldrick, in *Crystallographic Computing 3*, eds. G. M. Sheldrick, C. Kruger and R. Goddard, Oxford University Press, 1985, pp. 175–189.
- 14 DIFABS, N. Walker and D. Stuart, *Acta Crystallogr.*, *Sect. A*, 1983, **39**, 158.
- 15 TEXSAN, Crystal Structure Analysis Package, Molecular Structure Corporation, Houston, TX, 1995.
- 16 H. Hou, B. Liang, X. Xin, K. Yu, P. Ge, W. Ji and S. Shi, *J. Chem. Soc.*, *Faraday Trans.*, 1996, **92**, 2343.
- 17 J. M. Charnock, S. Bristow, J. R. Nicholson, C. D. Garner and W. Clegg, *J. Chem. Soc.*, *Dalton Trans*., 1987, 303.
- 18 A. Müller, H. Bogge and U. Schimanski, *Inorg. Chim. Acta*, 1980, **45**, L249.
- 19 A. Müller, H. Bogge and U. Schimanski, *Inorg. Chim. Acta*, 1983, **69**, 5 and refs. therein.
- 20 S. W. Du, N. Y. Zhu, P. C. Chen, X. T. Wu and J. X. Lu, *J. Chem. Soc.*, *Dalton Trans.*, 1992, 339.
- 21 S. W. Du, N. Y. Zhu, P. C. Chen, X. T. Wu and J. X. Lu, *Polyhedron*, 1992, **11**, 109.
- 22 J. C. Huffman, R. S. Roth and A. R. Siedle, *J. Am. Chem. Soc.*, 1976, **98**, 1310.
- 23 S. Guha, C. C. Frazier, P. L. Porter, K. Kang and S. E. Finberg, *Opt. Lett*., 1989, **14,** 952.
- 24 W. J. Blau, H. J. Byrne, D. J. Cardin and A. P. Davey, *J. Mater. Chem*., 1991, **1**, 245.
- 25 J. S. Shirk, J. R. Lindle, F. J. Bartoli, Z. H. Kafafi and A. W. Snow, in *Materials for Nonlinear Optics*, eds. S. R. Marder, J. E. Sohn and G. D. Stucky, American Chemical Society, Washington, 1992, p. 626.
- 26 Y. Wang and L. T. Cheng, *J. Phys. Chem*., 1992, **96**, 1530.
- 27 M. Sheik-Bahae, D. C. Hutching, D. J. Hagan and E. W. Van Stryland, *Phys. Rev. Lett*., 1991, **65**, 96; R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland and M. Sheik-Bahae, *IEEE J. Quantum Electron*., 1996, **32**, 1324.

Received 4*th December* 1996; *Paper* 6/08190H